Tetrahedron Letters,Vol. 24 , No. 36,pp 3823-3824,1983 Prınted in Great Britaln

0040-4039/83 \$3.00 + . 00
© 1983 Pergamon Press Ltd.

A CONVENIENT SYNTHESIS OF UNSYMMETRI CAL BIBENZYLS, HOMOALLYLARENES, AND HOMOPROPARGYLARENES via palladium-catalyzed cross coupling ${ }^{1}$

El-1chı Negıshı,* Hajıme Matsushita, Makoto Kobayashı, and Cynthia L Rand Department of Chemistry, Purdue University, W. Lafayette, Indiana 47907, U.S.A.

SUMMARY The palladium-catalyzed homobenzyl-aryl, homobenzyl-alkenyl, homoallyl-aryl, and homopropargyl-aryl cross coupling reactions provide the desired coupling products in high yields, whereas similar reactions involving alkynyl halides lead to low product yields

Organic compounds having two carbon-carbon double and/or triple bonds in a 1,5-relationship (1), such as $1,5-$ dienes and homoallylarenes, represent a wide variety of natural products Until recently, construction of such units via cross coupling had been achieved mostly by joining two allylic, propargylic, and/or benzylic groups. ${ }^{2}$ Although satisfactory in many cases, this approach has nevertheless been limited by difficulties such as cross-homo scrambling as well as regio- and/or stereorsomerization. ${ }^{3}$

We recently reported a Pd-catalyzed cross-coupling reaction of homoallyl- or homopropargylzincs with alkenyl halides as an efficient and selective route to 1,5 -dienes and 1,5 -enynes. ${ }^{4}$ We now report that the scope of this methodology may be extended to the homobenzyl-aryl (eq 1), homobenzyl-alkenyl (eq 2), homoallyl-aryl (eq 3), and homopropargyl-aryl (eq 4) cases, where the first entry in each case represents the corresponding organozinc reagent

Although we previously noted that the use of $\mathrm{N}_{1}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst in conjunction with acetylenic reagents led to very low product ylelds, ${ }^{4}$ both $\mathrm{N}_{1}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ appear to give comparable results in other instances Except for a minor formation ($<5-10 \%$) of the dimers of aryl or alkenyl halides, these reactions are essentially free of other side reactions, such as B elimination Unfortunately, our attempts to use alkynyl halides have resulted in disappointing results. Thus, for example, the reaction of phenylethylzinc chloride with l-octynyl bromide or lodide 1 n the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ produced only $30-40 \%$ y1elds of 1 -phenyl-3-decyne contaminated with significant amounts of phenylethyl halides and l-octyne, which presumably formed via metal-halogen exchange Use of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)^{5}$ did not improve the product yield.

In sharp contrast with the favorable results described above, our attempts to synthesize compounds represented by I via formation of the carbon-carbon bond between the two methylene groups have led to mixtures of cross- and homo-coupled products Among them are the Pd-catalyzed reactions of benzylzinc bromide with a-bromo-p-xylene, allyl bromide, and propargyl bromide

The following synthesis of (E)-l-phenyl-4-methyl-3-decene is representative To dry ZnCl ($136 \mathrm{~g}, 10 \mathrm{mmol}$) and $\mathrm{Mg}(036 \mathrm{~g}, 15 \mathrm{mmol})$ covered w 1 th THF (10 mL) under n trogen atmosphere was added 2-phenylethyl bromide $(2.78 \mathrm{~g}, 15 \mathrm{mmol}) \mathrm{in} 10 \mathrm{~mL}$ of THF. The moxture was heated for 10 n at $50^{\circ} \mathrm{C}$ and cooled. To this was added sequentially $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0404 \mathrm{~g}, 0.35 \mathrm{mmol}) \mathrm{dis}-$ solved in 4 mL of THF and (E)-1-1odo-2-methyl-1-octene The mixture was stirred for 3 h at $25^{\circ} \mathrm{C}$ and quenched with 3 NHCl . Extraction (ether), washing (aq NaHCO_{3}), drying (MgSO_{4}), and distillation gave $1.48 \mathrm{~g}(92 \%)$ of (E)-1-phenyl-4-methyl-3-decene bp $10{ }^{\circ} \mathrm{C}(03 \mathrm{~mm}), \mathrm{n}^{26} \mathrm{D} 14928$, $1_{\mathrm{H} N M R}\left(\mathrm{CDCl}_{3}, \mathrm{Me}_{4} \mathrm{~S}_{1}\right) \delta 089(\mathrm{t}, 7 \mathrm{~Hz}, 3 \mathrm{H}), 1.1-1.4(\mathrm{~m}, 8 \mathrm{H}), 153(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{t}, 7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.33(\mathrm{t}, 7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, 7 \mathrm{~Hz}), 5.18(\mathrm{t}, 7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}{ }^{6}{ }^{6}$

AcknowZedgments are made to NSF, NIH, and the Japan Tobacco \& Salt Public Corp. for support

REFERENCES AND NOTES

1 Selective Carbon-Carbon Bond Formation via Transition Metal Catalysis 35 Part 34 Negish1, E., John, R. A J Org. Chem. 1983, 48, 0000.
2 For a recent review, see Biellmann, J F , Ducep, J. B Org. React 1982, 27, 1
3. For a review, see Evans, D A, Andrews, G. C Acc. Chem. Res. $197 \underset{\sim}{2}, 7,147$.

4 (a) Neg1sh1, E, Valente, L. F., Kobayash1, M J. Am. Chem Soc. 1980, 102, 3298.
(b) Kobayashı, M , Negıshı, E J Org Chem, 1980, 45, 5223 (c) For a review, see Negish1, E Acc. Chem. Res 1982, 15, 340
5. It has been reported that the use of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right)$ and other Pd -phosphine complexes containing bidentate phosphine ligands leads to higher alkylation yields [Hayash1, T., Konısh1, M, Kumada, M Tetrahedron Lett., 19ㅝㅝㅜ, 1871].
6. The ${ }^{13} \mathrm{C}$ NMR spectrum of this compound 15 avallable ($\geq 98 \% E$) All products were adequately characterized by ${ }_{H}$ NMR, IR, and high resolution mass spectrometry for the determination of the stereochemistry of trisubstituted alkenes, see Rand, $C \operatorname{L}$, Van Horn, D E , Moore, M W, Negishi, E J. Org. Chem 1981, 46, 4093.
(Recerved in USA 5 May 1983)

